Interference Mitigation for LFRS onboard Chang'e-**4**

Jianfeng Zhou², Chendi Liu¹, Yan Su¹

¹National Astronomical Observatories, Chinese Academy Of Science, Beijing 100012, China 2Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Radio Astronomy from the Moon Virtual Workshop, July 28th-29th, 2021

OUTLINE

- Low-frequency Radio Spectrometer (LFRS) onboard Change-4
- The Properties of LFRS' s Interference
- Interference Mitigation Based on CLEAN
	- Basic Ideas
	- The CLEAN Algorithm
- Preliminary Results of LFRS
- Future Plans

Low-frequency Radio Spectrometer (LFRS) Onboard Chang' e-4 emissions, and during the lunar night the farside is also shielded from strong solar emissions (Figure w-frequency Radio Spectrometer (LFRS) Unboard Chang e-4 $\,$

Far side of the moon The two Radio Astronomy Explorer satellites, RAE-2, launched respectively in 1968, and 1968, and

Lunar-based low-frequency radio projects in history

- In 1964, Gorgolewski proposed to build **a synthetic aperture array** on the moon and its orbit.
- In 1985, Burns proposed **long**-**baseline lunar**-**earth interferometry**.
- In 1990, Douglas and Smith proposed to establish **a 15*15Km square array**. $\frac{a}{b}$ $\frac{1}{c}$ $\frac{1}{c}$ continuous proposed to establish $\frac{a}{c}$ $\frac{1}{c}$ $\frac{1}{\sqrt{2}}$ from the left $\frac{1}{\sqrt{2}}$ on the Moon. $\frac{1}{\sqrt{2}}$
- Lunar Radio eXpriment (LRX) led by ESA. \bullet -Lunar Radio expriment (LRX) led by ESA. The contraction signal signals original signals originals original signals original signals original signals original signals original signals original signals original signal
- The Dark Age Lunar Interferometer (**DALI**) funded by NASA.
- Lunar Array for Radio Cosmology (LARC).
- ESA, Farside Explorer Project, Lunar Back in 2025, L2 relay star, **low**-**frequency radio interferometer**, solar system, outer space outside the solar system.
- NASA's FARSIDE plan to place a low-frequency interference array on the back of the moon.

Chang'e-4 was the first space probe landed on the far-side of the moon! endig c + was the mst space probe iariaca on the far side of the moon.

Low-frequency Radio Spectrometer (LFRS) Onboard Chang' e-4

Location of Antennas Actual Photo

- Designed and made by Aerospace Information Research Institute
- Antennas A, B, C (5m)
- Antenna D (20cm)

LFRS Low frequency : 0.1-2MHz High frequency : 1-40MHz

Low-frequency Radio Spectrometer (LFRS) Onboard Chang'e-4

Scientific Goals

Solar Radio Bursts Solar Burst Intensity Peak intensity: 10^{-15} Wm⁻²Hz⁻¹

Low-frequency Radio Spectrometer (LFRS) Onboard Chang' e-4

Scientific Goals

-
- L burst 、S burst
- Cyclotron radiation

Jupiter: radiation belts

Jupiter's radio burst **•** Bernard Burke and Kenneth Franklin found 1955, 22.2MHz • $S = 1.21 \times 10^{-20} W/(m^2 \cdot Hz)$

> Burke, B. F. and K. L. Franklin, *Observations of a variable radio source associated with the planet Jupiter.*

The Properties Of LFRS' s Interference

7

The Properties Of LFRS' s Interference **The 4th trace on the 23rd moon day**

Each trace has :

- **4096 points**,
- sampling rate **100MHz**,
- total length **40.96us**.

The interval between two adjacent traces is about **1.0 second**.

The Properties Of LFRS' s Interference

The signals of A antenna on different moon days

2nd trace, 3rd moon day

 $2nd$ trace, $15th$ moon day $2nd$ trace, $20th$ moon day $2nd$ trace, $24th$ moon day

$2nd$ trace, $5th$ moon day $2nd$ trace, $10th$ moon day

Interference Mitigation Based On CLEAN

Basic ideas

The composition of the raw signals : Platform interference $I(t)$; Astronomical signal $C(t)$; Receiver noise $N(t)$; Projection coefficients α_A , α_B , α_C , β_A , β_B , and β_C .

> $S_A(t) = \alpha_A(t)I(t) + \beta_A(t)C(t) + N_A(t)$ $S_R(t) = \alpha_R(t)I(t) + \beta_R(t)C(t) + N_R(t)$ $S_c(t) = \alpha_c(t)I(t) + \beta_c(t)C(t) + N_c(t)$

1. Platform interference: **Coherent** (High correlation), Relatively strong. 2. Astronomical signal: **Coherent** (High correlation); Relatively weak. 3. Receiver' s noise:**Incoherent** (No correlation).

Decompose raw signals into coherent **CLEAN Model Signals** and partially coherent **Residual Signals!**

Interference Mitigation Based On CLEAN **Basic ideas**

Demonstration of CLEAN by Simulated Data

 $f_1 = 4.137$ Hz $f_2 = 6.124$ Hz

 $A(t) = 1.0 \cos(2\pi f_1 t) + 0.5 \cos(2\pi f_2 t + \frac{\pi}{2}) + N_1(t)$ $B(t) = 0.5 \cos(2\pi f_1 t) + 1.0 \cos \left(2\pi f_2 t + \right)$ $\frac{1}{\pi}$ $\frac{1}{2}$ + N₂(t)

 $N_1(t)$ and $N_2(t)$ are independent random Gaussian noises, with $\sigma = 1.0$.

Interference Mitigation Based On CLEAN **Basic ideas Demonstration of CLEAN by Simulated Data**

1st iteration

 $\omega_m = 2\pi \cdot 4.185 Hz$ $M_m^A = 1.267$ $M_m^B = 0.607$ $\varphi_m^A=-0.08$ $\varphi_m^B=-0.08$ $\delta M_m^A \cos (\omega_m t + \varphi_m^A)$ $\delta M_m^B \cos (\omega_m t + \varphi_m^B)$ CLEAN Gain δ =0.2.

Interference Mitigation Based On CLEAN **Basic ideas Demonstration of CLEAN by Simulated Data**

2nd iteration

 $\omega_m = 2\pi \cdot 6.083 Hz$ $M_m^A = 0.574$ $M_m^B = 1.185$ $\varphi_m^A = 1.705$ $\varphi_m^B = 1.675$ $\delta M_m^A \cos (\omega_m t + \varphi_m^A)$ $\delta M_m^B \cos (\omega_m t + \varphi_m^B)$ CLEAN Gain δ =0.2.

Interference Mitigation Based On CLEAN **Basic ideas Demonstration of CLEAN by Simulated Data**

Interference Mitigation Based On CLEAN

The CLEAN Algorithm

 $f_r^A(t) = f_r^A(t) - \delta M_m^A \cos(\omega_m t + \varphi_m^A)$ $f_r^B(t) = f_r^B(t) - \delta M_m^B {\rm cos} (\omega_m t + \varphi_m^B$

 $f_{mod}^{A}(t) = f_{mod}^{A}(t) + \delta M_{m}^{A} \cos(\omega_{m}t + \varphi_{m}^{A})$ $f_{mod}^{B}(t) = f_{mod}^{B}(t) + \delta M_{m}^{B} \cos(\omega_{m}t + \varphi_{m}^{B})$

Preliminary Results Of LFRS

The 1st trace on the 23rd moon day

Preliminary Results Of LFRS

The 1st trace on the 23rd moon day

Preliminary Results Of LFRS

The 1st trace on the 23rd moon day

After CLEAN, the sensitivity of the residual signal is improved by about **8 order of magnitude**!

The correlation coefficient between the residual data of A and B antennas.

Future Plans

For CLEAN Model Signals : Modeling, Calibrating and Subtracting the interference!

²⁰ **Solar radio bursts**

Future Plans

For Residual Data : Averaging(Radiometer), Model fitting and Deconvolution!

data of A antenna.

Summary

- 1. We decomposed the raw signals of LFRS into **coherent CLEAN Model Signals** and **partially coherent Residual Signals** by using **CLEAN algorithm**!
- 2. After CLEAN, the sensitivity of the residual signal is improved by about **8 orders of magnitude**!
- 3. Further astronomical analysis will use both **CLEAN Model Signals** and **Residual Signals**.