Interference Mitigation for LFRS onboard Chang'e-4

Jianfeng Zhou², Chendi Liu¹, Yan Su¹

¹National Astronomical Observatories, Chinese Academy Of Science, Beijing 100012, China ²Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Radio Astronomy from the Moon Virtual Workshop, July 28th-29th, 2021

OUTLINE

- Low-frequency Radio Spectrometer (LFRS) onboard Change-4
- The Properties of LFRS's Interference
- Interference Mitigation Based on CLEAN
 - Basic Ideas
 - The CLEAN Algorithm
- Preliminary Results of LFRS
- Future Plans

Low-frequency Radio Spectrometer (LFRS) Onboard Chang'e-4

Far side of the moon

Lunar-based low-frequency radio projects in history

- In 1964, Gorgolewski proposed to build <u>a synthetic aperture array</u> on the moon and its orbit.
- In 1985, Burns proposed long-baseline lunar-earth interferometry.
- In 1990, Douglas and Smith proposed to establish <u>a 15*15Km</u> square array.
- Lunar Radio eXpriment (LRX) led by ESA.
- The Dark Age Lunar Interferometer (**DALI**) funded by NASA.
- Lunar Array for Radio Cosmology (LARC).
- ESA, Farside Explorer Project, Lunar Back in 2025, L2 relay star, <u>low-frequency radio interferometer</u>, solar system, outer space outside the solar system.
- NASA's FARSIDE plan to place a low-frequency interference array on the back of the moon.

Chang'e-4 was the first space probe landed on the far-side of the moon!

Low-frequency Radio Spectrometer (LFRS) Onboard Chang'e-4

Location of Antennas

- Designed and made by Aerospace
 Information Research Institute
- Antennas A, B, C (5m)
- Antenna D (20cm)

Actual Photo

LFRS Low frequency : 0.1-2MHz High frequency : 1-40MHz

Low-frequency Radio Spectrometer (LFRS) Onboard Chang'e-4 Scientific Goals

Solar Radio Bursts

Solar Burst Intensity Peak intensity: 10^{-15} Wm⁻²Hz⁻¹

Low-frequency Radio Spectrometer (LFRS) Onboard Chang'e-4

Scientific Goals

Jupiter's radio burst

- 1955, 22.2MHz
- L burst 、 S burst
- Cyclotron radiation

Jupiter: radiation belts

Bernard Burke and Kenneth Franklin found
S = 1.21 × 10⁻²⁰ W/(m² · Hz)

Burke, B. F. and K. L. Franklin, *Observations of a variable radio source associated with the planet Jupiter.*

The Properties Of LFRS's Interference

7

The Properties Of LFRS's Interference The 4th trace on the 23rd moon day

Each trace has :

- 4096 points,
- sampling rate
 100MHz,
- total length
 40.96us.

The interval between two adjacent traces is about **1.0 second**.

The Properties Of LFRS's Interference

The signals of A antenna on different moon days

2nd trace, 3rd moon day

2nd trace, 15th moon day

2nd trace, 5th moon day

2nd trace, 20th moon day

2nd trace, 10th moon day

2nd trace, 24th moon day

Interference Mitigation Based On CLEAN

Basic ideas

The composition of the raw signals : <u>Platform interference I(t)</u>; <u>Astronomical</u> <u>signal C(t)</u>; <u>Receiver noise N(t)</u>; Projection coefficients $\underline{\alpha}_A$, $\underline{\alpha}_B$, $\underline{\alpha}_C$, $\underline{\beta}_A$, $\underline{\beta}_B$, and $\underline{\beta}_C$.

 $S_A(t) = \alpha_A(t)I(t) + \beta_A(t)C(t) + N_A(t)$ $S_B(t) = \alpha_B(t)I(t) + \beta_B(t)C(t) + N_B(t)$ $S_C(t) = \alpha_C(t)I(t) + \beta_C(t)C(t) + N_C(t)$

Platform interference: Coherent (High correlation), Relatively strong.
 Astronomical signal: Coherent (High correlation); Relatively weak.
 Receiver's noise: Incoherent (No correlation).

Decompose raw signals into coherent <u>CLEAN Model Signals</u> and partially coherent <u>Residual Signals</u>!

Interference Mitigation Based On CLEAN Basic ideas

Demonstration of CLEAN by Simulated Data

 $f_1 = 4.137 \text{ Hz}$ $f_2 = 6.124 \text{ Hz}$

 $A(t) = 1.0\cos(2\pi f_1 t) + 0.5\cos\left(2\pi f_2 t + \frac{\pi}{2}\right) + N_1(t)$ $B(t) = 0.5\cos(2\pi f_1 t) + 1.0\cos\left(2\pi f_2 t + \frac{\pi}{2}\right) + N_2(t)$

 $N_1(t)$ and $N_2(t)$ are independent random Gaussian noises, with $\sigma = 1.0$.

Interference Mitigation Based On CLEAN Basic ideas Demonstration of CLEAN by Simulated Data

1st iteration

 $\omega_{m} = 2\pi \cdot 4.185 Hz$ $M_{m}^{A} = 1.267$ $M_{m}^{B} = 0.607$ $\varphi_{m}^{A} = -0.08$ $\varphi_{m}^{B} = -0.08$ $\delta M_{m}^{A} \cos(\omega_{m} t + \varphi_{m}^{A})$ $\delta M_{m}^{B} \cos(\omega_{m} t + \varphi_{m}^{B})$ CLEAN Gain δ =0.2.

Interference Mitigation Based On CLEAN Basic ideas Demonstration of CLEAN by Simulated Data

2nd iteration

 $\omega_{m} = 2\pi \cdot 6.083Hz$ $M_{m}^{A} = 0.574$ $M_{m}^{B} = 1.185$ $\varphi_{m}^{A} = 1.705$ $\varphi_{m}^{B} = 1.675$ $\delta M_{m}^{A} \cos(\omega_{m}t + \varphi_{m}^{A})$ $\delta M_{m}^{B} \cos(\omega_{m}t + \varphi_{m}^{B})$ CLEAN Gain δ =0.2.

Interference Mitigation Based On CLEAN Basic ideas Demonstration of CLEAN by Simulated Data

Interference Mitigation Based On CLEAN

The CLEAN Algorithm

 $f_r^A(t) = f_r^A(t) - \delta M_m^A \cos(\omega_m t + \varphi_m^A)$ $f_r^B(t) = f_r^B(t) - \delta M_m^B \cos(\omega_m t + \varphi_m^B)$

 $f_{mod}^{A}(t) = f_{mod}^{A}(t) + \delta M_{m}^{A} \cos(\omega_{m}t + \varphi_{m}^{A})$ $f_{mod}^{B}(t) = f_{mod}^{B}(t) + \delta M_{m}^{B} \cos(\omega_{m}t + \varphi_{m}^{B})$

Preliminary Results Of LFRS

The 1st trace on the 23rd moon day

Preliminary Results Of LFRS

The 1st trace on the 23rd moon day

Preliminary Results Of LFRS

The 1st trace on the 23rd moon day

After CLEAN, the sensitivity of the residual signal is improved by about 8 order of magnitude!

The correlation coefficient between the residual data of A and B antennas. 19

Future Plans

For CLEAN Model Signals : Modeling, Calibrating and Subtracting the interference!

Solar radio bursts

Future Plans

For Residual Data : Averaging(Radiometer), Model fitting and Deconvolution!

64-point averaging of the residual data of A antenna.

Summary

- 1. We decomposed the raw signals of LFRS into coherent CLEAN Model Signals and partially coherent Residual Signals by using CLEAN algorithm!
- 2. After CLEAN, the sensitivity of the residual signal is improved by about 8 orders of magnitude!
- 3. Further astronomical analysis will use both CLEAN Model Signals and Residual Signals.